

#### 58 CIML Meeting, Item 11.2.2

## Proposal for a New Project in TC12

# **DC Electricity Metering**

Proposal from: TC12 and the United States

### <u>History</u>

- OIML TC12 is Parent Technical Committee.
- Discussions under TC12 PG1 revision of OIML R46: Electricity Meters
- May 2018 at the 1<sup>st</sup> meeting of the R46 Project Group Initial decision: Exclude DC metering from R46 revision
- May 2021 meeting: Subgroup formed for DC Metering

Include DC metering as annex

Revisit as a PG

No progress in this Subgroup from 2021 until June 2023.

• June 2023 PG meeting: Decision to form a new project.

Too difficult to maintain AC & DC in same recommendation

### Scope of this Proposed Project

- Develop a DC metering Recommendation (standard)
- Establish performance criteria, metrological & technical requirements for revenue applications
- Requirements for type approval, initial verification and subsequent verification

#### **Existing Standards**

ANSI C12.32-2021 American National Standard for Electricity Meters for the Measurement of DC Energy

ANSI also has a subcommittee on developing revenue grade DC transducers.

IEC 62053-41 Electricity metering equipment - Particular requirements - Part 41: Static meters for DC energy (classes 0,5 and 1)

EN 50470-4 (e.g. BS EN 50470-4:2023 Electricity metering equipment Particular requirements. Static meters for DC active energy (class indexes A, B and C))

## Motivation for the project

**Existing Motivation Application** 

OIML G22 provides an option for EVSEs with separately type approved meters where specifications meet or exceed those requirements in the guide.

Some Emerging Motivation Applications\*

- Solar arrays
- Batteries
- Power Electronics
- EVs

Challenge: Market is small. *Opportunity: Jump start international harmonization.* 

\* Information provided by David Lawrence, Duke Energy, Emerging Technology Office



#### Future Vision



### Some Advantages of DC Usage\*

- Lack of conversion losses: In the US, 5-20% of power lost on AC/DC conversion
- Many new loads/application are DC: including many new appliances.
- Improved energy efficiency of DC motors and DC lighting.
- Reduced wiring costs reduced usage of copper.

\* Information provided by David Lawrence, Duke Energy, Emerging Technology Office

## Voltage by Use Case\*

- 12-48VDC: Cell towers, lighting
- 125VDC: Utility substation battery
- 350VDC: Data center, residential home (DC), commercial building, EV charging
- 750VDC: DC bus neighborhood microgrid
- 1 000VDC: PV farm, DC bus microgrid, fast EV charging
- 1 500VDC: DC bus microgrid

\* Information provided by David Lawrence, Duke Energy, Emerging Technology Office



#### 58 CIML Meeting, Item 11.2.2

Proposal from TC12 and the US for a New Project

# **DC Electricity Metering**